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Zusammenfassung

Die Großhirnrinde ist auf mehreren Skalen organisiert – von Ionenkanälen über neuronale Schalt-

kreise, die sich in verschiedenen kortikalen Schichten anordnen, bis hin zu einem weitreichenden

Netzwerk kortikaler Areale. Die strukturellen und funktionellen Eigenschaften dieser Skalen

variieren erheblich zwischen verschiedenen kortikalen Regionen. Diese heterogene Organisation

über verschiedene Maßstäbe hinweg ist das Ergebnis einer kontinuierlichen Verfeinerung über

die gesamte Lebensspanne. Ein umfassendes Verständnis der multiskaligen Organisation der

Großhirnrinde und ihrer Entwicklung erfordert integrative und computergestützte Analysemeth-

oden. Das Ziel dieser Arbeit war es, fortgeschrittene computergestützte Verfahren einzusetzen,

um zu untersuchen, wie kortikale Phänomene auf der Mikro- und Mesoskala während der En-

twicklung mit großräumiger kortikaler Organisation zusammenhängen. Insbesondere haben wir

die kortikale Zytoarchitektur untersucht, die mit kortiko-kortikaler Konnektivität zusam-

menhängt (Studie 1), sowie kortikale Mikroschaltkreise, abgeleitet aus funktioneller Dy-

namik und Konnektivität (Studie 2), und zelluläre und molekulare Muster, die der

kortikalen Morphologie zugrunde liegen (Studie 3).

Unsere Analysen in Studie 1 zeigten, dass die Struktur kortikaler Schichten auf der Mesoskala

entlang einer Hauptachse variierte, die sich von kaudalen zu rostralen Arealen erstreckte und

entlang der die relative Dicke der tieferen Schichten zunahm. Diese Achse spiegelte auch die

hierarchische Organisation kortikaler Konnektivität wieder. Darüber hinaus war die Ähnlichkeit

kortikaler Schichten mit der Wahrscheinlichkeit und Stärke der kortiko-kortikalen Konnektivität

assoziiert, vermutlich ein entwicklungsbasiertes Phänomen.

In der zweiten Studie verwendeten wir als Nächstes einen individualisierten computergestütz-

ten Modellierungsansatz, um das Gleichgewicht zwischen neuronaler Exzitation und Inhibition

in kortikalen Mikroschaltkreisen von Jugendlichen auf der Grundlage ihrer kortikalen Konnek-

tivität und Dynamik, die in der funktionellen Bildgebung im Ruhezustand beobachtet wur-

den, zu erfassen. Um die für diesen Ansatz erforderlichen und aufwändigen Simulationen zu

ermöglichen, haben wir ein neues und effizientes Simulationsverfahren implementiert, die als

Python-Paket veröffentlicht wurde: cuBNM. Mithilfe dieses Ansatzes fanden wir in zwei un-

abhängigen Querschnitt- und Längsschnittdatensätzen eine weit verbreitete, entwicklungsbe-

dingte Abnahme der Exzitation im Verhältnis zur Inhibition in Assoziationsarealen, die mit

einer Zunahme oder Stabilität in den sensomotorischen Arealen einherging. Dieses Entwick-

lungsmuster stimmte mit bereits beschriebenen räumlich-zeitlichen Mustern der Hirnentwicklung

in sensomotorischen und Assoziationsarealen überein.

Schließlich untersuchten wir in Studie 3 die räumliche Ko-Lokalisation zwischen kortikalen

Mustern mikro- und mesoskaliger neurobiologischer Prozesse mit räumlich-zeitlichen Quersch-

nitts- und Längsschnittmustern kortikaler Dickenveränderungen über die Lebensspanne. Ziel war

es zu verstehen, welche zellulären und molekularen Prozesse der Reifung und den Veränderungen

der kortikalen Morphologie auf der Makroebene über die Lebensspanne zugrunde liegen könnten.

Unsere Ergebnisse deuten darauf hin, dass Prozesse wie dopaminerge, glutamaterge und cholin-

erge Neurotransmittersysteme sowie Gliazellen, inhibitorische Neuronen und der Hirnstoffwech-

sel zur Reifung der kortikalen Morphologie beitragen können.

Insgesamt fördert diese Arbeit unser Verständnis der kortikalen Organisation und ihrer En-

twicklung auf mehreren Skalen und trägt gleichzeitig zur Weiterentwicklung computergestützter

Verfahren für die zukünftige Forschung bei. Durch die Integration von mikro-, meso- und

makroskaligen Perspektiven bieten unsere Erkenntnisse über die normative kortikale Organi-

sation und Reifung eine Grundlage für die Untersuchung der gestörten kortikalen Entwicklung

bei psychischen Störungen.
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Summary

The cerebral cortex is organized at multiple scales, ranging from ion channels, to neuronal circuits

organized across cortical layers, to the interconnected network of cortical areas. The structural

and functional properties at these scales vary widely across cortical areas. This heterogeneous

organization across different scales is the result of continuous refinement throughout the lifespan.

Understanding the multiscale organization of the cerebral cortex and its maturation requires

integrative computational approaches that bridge across scales. The goal of this work was to use

advanced computational techniques to better understand how micro- and mesoscale cortical

phenomena relate to macroscale cortical organization throughout development. Specifically,

we examined cortical cytoarchitecture associated with corticocortical connectivity (Study

1), cortical microcircuitry inferred from functional dynamics and connectivity (Study 2),

and cellular and molecular processes underlying cortical morphology (Study 3).

In Study 1, we found that cortical laminar structure at the mesoscale varied along a principal

axis extending from caudal to rostral areas, along which the relative thickness of deeper layers

increased. This axis was co-aligned with the hierarchical organization of macroscale cortical

connectivity. Furthermore, similarity of laminar structure was associated with the likelihood

and strength of corticocortical connectivity, a phenomenon thought to have developmental roots.

Next, in Study 2, we used an individualized computational modeling approach to infer the

regional levels of excitation-inhibition balance in cortical microcircuits of developing adolescents

based on their macroscale cortical connectivity and dynamics observed in resting-state functional

imaging. To enable the large-scale simulations required for this approach, we developed a novel

and efficient implementation of the simulations, released as a Python package, cuBNM. Using

this approach, across two independent cross-sectional and longitudinal datasets, we found a

widespread age-related decrease of excitation relative to inhibition within the association areas,

paralleled by its increase or lack of change in sensorimotor areas. This developmental pattern

was consistent with the previously proposed sensorimotor-association spatiotemporal pattern of

neurodevelopment.

Finally, in study 3, we examined the spatial co-localization between cortical maps of micro-

and mesoscale neurobiological processes with cross-sectional and longitudinal spatiotemporal

patterns of cortical thickness changes across the lifespan to understand which cellular and

molecular processes may underlie maturation and lifespan changes in cortical morphology at the

macroscale. Our results suggest that processes such as dopaminergic, glutamatergic, and cholin-

ergic neurotransmitter systems, as well as glial cells, inhibitory neurons, and brain metabolism,

may contribute to the maturation of cortical morphology.

Overall, this work advances our understanding of multiscale cortical organization and its

maturation while contributing to the development of computational tools for future research.

By integrating micro-, meso-, and macroscale perspectives, our findings on normative cortical or-

ganization and maturation provide a foundation for investigating impaired cortical development

in mental health disorders.
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Chapter 1

Introduction

The cerebral cortex is a thin, layered sheet of gray matter that forms the outer surface of

the brain (Abeles, 1991). Throughout mammalian evolution, the cerebral cortex has expanded

considerably. The cortical surface area in humans is nearly a thousand times larger than that of

mice, and is therefore extensively folded to fit within the skull (Rakic, 2009). The expanded and

folded cerebral cortex in humans has enabled a wide range of complex functions and intelligent

behaviors that have been fundamental to the human civilization (Galakhova et al., 2022). This

has placed the cerebral cortex at the center of neuroscience research aimed at understanding the

neural underpinnings of complex human behavior and cognition, their changes across lifespan

and the dysfunctions associated with psychiatric and neurological disorders.

1.1 Regional Variability of the Cerebral Cortex

The cerebral cortex consists of regions that exhibit a pronounced and systematic variability

in their structural and functional properties, such as cytoarchitecture (Amunts & Zilles, 2015;

Garćıa-Cabezas et al., 2019; Paquola, Vos De Wael, et al., 2019), neuronal and receptor diversity

(Goulas et al., 2021; Hansen et al., 2022; Lake et al., 2016; Palomero-Gallagher et al., 2015),

functional specifications (Mesulam, 1998), and connectivity profiles (Margulies et al., 2016; Yeo

et al., 2011). These variations are predominantly found along a sensory-fugal axis, with unimodal

sensorimotor areas, involved in sensation and action, at one end, and transmodal association

areas, critical for complex and integrative functions, at the other end (Mesulam, 1998; Sydnor

et al., 2021).

As the cortex transitions from sensory to association areas, the laminar structure becomes less

differentiated (Garćıa-Cabezas et al., 2019) and neuronal density decreases (Finlay & Uchiyama,

2015), while the neurons become larger, with more complex dendritic arbors and increased den-

dritic spine density (Charvet & Finlay, 2014; Jacobs et al., 2001). This cytoarchitectonic variabil-

ity is mirrored by gradients of excitation and inhibition, with varying distributions of neuronal

subtypes organized across cortical layers (Burt et al., 2018; Dombrowski et al., 2001; Lake et al.,

2016; X.-J. Wang, 2020). For instance, the ratio of input-controlling calbindin-positive interneu-

rons to output-controlling parvalbumin-positive interneurons gradually increases from sensory

to association areas (X.-J. Wang, 2020). Concurrently, along the same axis, the distribution

of neurotransmitter receptors varies such that towards the association areas the diversity of re-

ceptor densities, the ratio of excitatory to inhibitory and the density of metabotropic receptors

increase, while the density of ionotropic receptors decreases (Goulas et al., 2021). These mi-

crostructural, cellular and molecular distinctions ultimately adapt cortical areas for their specific

1



1. Introduction 2

functional demands, from externally oriented sensation to internally focused cognition (Mesu-

lam, 1998; Sydnor et al., 2021). The functional specialization of cortical areas mirrors formation

of canonical cortical networks, such as the visual and somatomotor networks at one end, and

the frontoparietal and default mode networks at the other end (Yeo et al., 2011).

Understanding the regional variability of the cerebral cortex has historically been an im-

portant focus of neuroscience, and in particular, the field of brain mapping. In this context,

beyond characterizing the nature of cortical heterogeneity by investigating its different features,

fundamental questions remain on the origin and the principles underlying the regional hetero-

geneity of the cortex: How are these diverse structural and functional properties interconnected

across regions? What underlying principles govern the coordination of regional differentiation in

cytoarchitecture, neurotransmitter distribution, and connectivity? Moreover, how these inter-

regional differences vary over time, and what neurobiological processes shape these changes?

1.2 Developmental Processes Shaping the Cerebral Cortex

The organization of the cerebral cortex emerges and refines over years of development, from

prenatal stages through adolescence and adulthood (Cadwell et al., 2019; Kostović & Judaš,

2015; Stiles & Jernigan, 2010; Sydnor et al., 2021). During embryonic and fetal stages, cortico-

genesis begins with the proliferation of neurons in the ventricular zone, that migrate radially to

their destination in the prospective cerebral cortex (Kostović & Judaš, 2015; Stiles & Jernigan,

2010). Molecular processes establish an initial “protomap” that determines the specification

of cortical areas, which is later refined by activity-dependent processes (Cadwell et al., 2019;

Kostović & Judaš, 2015). This is followed by the development of neuronal processes, including

dendritic arborization, axonal growth, spinogenesis and formation of synapses, which construct

neuronal circuits. These early circuits are later refined by elimination of exuberant connectiv-

ity elements, through developmental apoptosis and synaptic pruning (Kostović & Judaš, 2015;

Stiles & Jernigan, 2010).

The maturation of the cerebral cortex continues postnatally, and involves continuous refine-

ment of the cortical circuits, through synaptic pruning, as well as maturation of excitatory and

inhibitory neurons, glial cells, and intracortical myelination, mirroring changes in macroscale

cortical structure, function and connectivity (Sydnor et al., 2021). These maturation processes

are very protracted in humans, continuing into young adulthood (Kostović & Judaš, 2015; Stiles

& Jernigan, 2010; Sydnor et al., 2021). Postnatal development of the cerebral cortex is pro-

posed to unfold across a spatiotemporal sensorimotor-to-association pattern, with maturation

of association cortices being more protracted and occurring later than sensorimotor areas (Syd-

nor et al., 2021). This spatiotemporal developmental pattern has been suggested to support

the maturation of sensory and motor functions early in life toward higher-order executive and

social functions during adolescence (Larsen & Luna, 2018; Toyoizumi et al., 2013). Conse-

quently, adolescence is considered a critical developmental period during which the brain is

particularly vulnerable to maturational impairments due to abnormal neurobiology or adverse

experiences, which are associated with psychiatric disorders that often affect higher cognitive

functions (Larsen & Luna, 2018; Paus et al., 2008).

The developmental origins of cortical organization, highlights the importance of studying
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various structural and functional features of the cerebral cortex from a developmental perspec-

tive, focusing on the spatiotemporal trajectories of their maturation, mechanisms involved in

shaping these trajectories, and their functional, behavioral and clinical consequences.

1.3 Multiscale Organization of the Cerebral Cortex

The organization of the cerebral cortex is complex and modular, spanning multiple spatial and

temporal scales. Spatially, at the microscale, molecular processes govern neuronal morphology,

synaptic connectivity, and the characterization of cell types. Excitatory and inhibitory neurons

assemble into microcircuits which are arranged vertically in cortical layers and horizontally in

minicolumns. These minicolumns then aggregate into columns, subareas, and areas, ultimately

forming a macroscale network of interconnected regions and lobes. This multiscale organiza-

tion provides the structural scaffolding for the dynamic inter-areal connections and large-scale

integrative functions that underlie cognition and behavior (Bassett & Gazzaniga, 2011; van den

Heuvel et al., 2019). Temporally, while ion channels and synapses operate on the millisecond

scale, neural states unfold in seconds to minutes, and cortical structure and function change

through learning that occurs over days to weeks and maturational changes that span lifetime

(Bassett & Gazzaniga, 2011).

1.3.1 Scales of Investigation in Neuroscience and the Need for Their Inte-

gration

Understanding the complexity of the cerebral cortex and its implications for cognition and

behavior requires a variety of methods, each specialized to investigate different spatial and

temporal scales of organization (Fig. 1.1). At the microscale, electron microscopy or patch-

clamp recordings can be used to study details of synaptic structure or ion channel dynamics.

At the mesoscale, histological techniques can visualize cortical cytoarchitecture and laminar

structure, calcium imaging allow the study of neural circuits and population activity across

cortical layers, and electrophysiological recordings can capture neural signaling within specific

cortical regions. At the macroscale, neuroimaging techniques such as functional magnetic

resonance imaging (fMRI), diffusion weighted imaging (DWI), and positron emission tomography

(PET) provide in vivo insights into large-scale brain activity, connectivity, metabolism, and

molecular organization (Sejnowski et al., 2014).

Historically, neuroscience studies have predominantly focused on studying single problems

at single levels and using single techniques (Sejnowski et al., 2014). However, each technique,

when used in isolation, provides only a partial view of cortical organization due to its inherent

limitations. For instance, neuroimaging techniques provide extensive coverage of the entire brain

but lack the spatial and temporal resolution necessary to capture neuronal details. In contrast,

techniques such as single-neuron recordings, provide detailed and high-resolution data but are

confined to small, localized areas of the cerebral cortex. This raises the question of how different

levels of cortical organization are interrelated, which has led to a growing interest in approaches

that integrate across different scales of investigation (Sejnowski et al., 2014; van den Heuvel

et al., 2019).
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Fig. 1.1. Scales of investigation in neuroscience. The brain and cerebral cortex are organized into
multiple spatial (Y axis) and temporal (X axis) scales. Each neuroscience method is specialized to study a
specific range of the spatial and temporal scales. Filled boxes show perturbation-based methods whereas
outlined boxes show observation-based methods. Adapted from Sejnowski et al., 2014.
EEG: electroencephalography; MEG: magnetoencephalography; VSD: voltage-sensitive dye; TMS: transcranial
magnetic stimulation; fMRI: functional magnetic resonance imaging; sMRI: structural magnetic resonance
imaging; PET: positron emission tomography, 2-DG: 2-deoxyglucose.

1.3.2 Integration of Scales Using Computational Approaches

Computational neuroscience plays an important role in bridging the scales of investigation.

It relies on both theory-driven and data-driven frameworks to integrate findings and study

interrelation of phenomena across different levels of cortical organization.

Theory-driven approaches use mathematical models based on physical rules and bio-

logical principles to address specific mechanistic hypotheses through computer simulations and

mathematical analyses (Ferrante et al., 2018; Khaleghi et al., 2022). The Hodgkin-Huxley model

of the action potential, developed over 70 years ago, is a seminal example of theory-driven mod-

els. This model demonstrated how action potentials at the neuronal level arise from ion channel

dynamics at the subneuronal level (Catterall et al., 2012; Hodgkin & Huxley, 1952). Such

theory-driven models have since been further developed and applied to various neural phenom-

ena at different levels. For example, biophysical network modeling (BNM) of the brain describes

mathematical models that characterize how the macroscale brain connectivity and dynamics

emerge from the interactions of modeled neuronal populations at the mesoscale. This makes

the BNM a valuable tool for deriving mechanistic insights into ‘hidden’ microscale phenomena,

such as microcircuit dynamics, based on macroscale observations acquired using neuroimaging

techniques (Deco & Kringelbach, 2014; Stephan et al., 2015).

Data-driven approaches apply mathematical techniques to complex and multidimensional

data to either understand the latent structure of the data (‘unsupervised learning’ and ‘dimen-

sionality reduction’) or assess relationships between variables to predict outcomes in unseen

samples (‘supervised learning’) (Ferrante et al., 2018). These methods simplify complex, high-



1. Introduction 5

dimensional data while preserving important features, allowing researchers to uncover patterns

that link micro-, meso-, and macroscale processes. For example, principal component analysis

(PCA), a dimensionality reduction technique, has been applied to single-neuron recording data

from neuronal populations to reveal the latent state spaces underlying phenomena such as the

integration of sensory inputs during decision making (Mante et al., 2013). In addition, sim-

ilar methods are applied to high-resolution histological data at the mesoscale to describe the

gradual variation of cytoarchitecture across the cortical mantle (Paquola, Vos De Wael, et al.,

2019). Furthermore, at the macroscale, dimensionality reduction has been applied to resting-

state fMRI (rs-fMRI) data to assess large-scale connectivity of the cerebral cortex, revealing

distinct connectivity profiles of sensorimotor and association areas (Margulies et al., 2016; Yeo

et al., 2011).

Notably, the theory-driven and data-driven approaches are not mutually exclusive: Theory-

driven models are often informed by empirical data, whereas data-driven approaches can be

guided by theoretical frameworks regarding the phenomena under study (Ferrante et al., 2018).

1.4 Understanding Organization and Development of the Cere-

bral Cortex Through Bridging of Scales

Our current understanding of cortical organization, its regional variability, and developmental

factors shaping it is the result of decades of neuroscience research on the cerebral cortex. Most of

neuroscience research, however, has been dominated by studies that investigate a single cortical

feature at a specific scale and using a single methodology. However, as discussed in the previous

section, the cerebral cortex (and more generally, the brain) is a multiscale and complex system,

where the phenomena at micro-, meso- and macroscale interact with and inform each other.

Given the focus of traditional studies on single scales of investigation, less is known about how

cortical features at different scales interact. This calls for integrative computational approaches

aimed at bridging the scales to better understand complexity of the cerebral cortex, including

its regional variability and changes through development. These computational approaches can

achieve two objectives: first, they can reveal the nature of whether and how different cortical

features at micro-/mesoscale and macroscale interact and may influence each other; and second,

they can use this knowledge to make inferences about cortical phenomena at micro-/mesoscale

based on observations at the macroscale, or vice versa.

Following this paradigm, the research conducted in this thesis aims to extend our under-

standing of the complexity of the cerebral cortex through computational and developmental

perspectives across multiple scales of organization. Specifically, I study micro-/mesoscale

cortical phenomena in relation to macroscale cortical organization and development, including

i) cortical cytoarchitecture associated with corticocortical connectivity, ii) cortical mi-

crocircuitry inferred based on functional dynamics and connectivity, and iii) cellular

and molecular processes underlying cortical morphology. The following sections will fur-

ther elaborate on these phenomena and highlight the gaps in our knowledge that were addressed

in this thesis.
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1.4.1 Cortical Cytoarchitecture: Links to Connectivity and Maturation

Cortical cytoarchitecture refers to the spatial arrangement and distribution of various subtypes

of neurons across the depth of the cerebral cortex (Amunts & Zilles, 2015). The cerebral cor-

tex is a layered structure, consisting of horizontally stacked layers with distinct histological

features such as the morphology, density and size of neuronal cell bodies mirroring differences

in their function and connectivity (Amunts & Zilles, 2015; Shipp, 2007; von Economo et al.,

1925). Across the majority of the cortical extent, in the region referred to as the ‘isocortex’,

six distinct cytoarchitectonic layers can be identified: Layer I (‘molecular’), the outermost layer

which has a low density of neuronal cell bodies and contains mostly dendrites and axons; Layer

II (‘external granular’), which consists of densely packed small pyramidal neurons; Layer III

(‘external pyramidal’), which contains larger pyramidal neurons; Layer IV (‘internal granular’),

which containing densely packed granular and pyramidal neurons; Layer V (‘internal pyrami-

dal’) which consists of large and relatively sparse pyramidal neurons; Layer VI (‘multiform’)

containing corticothalamic pyramidal cells and heterogeneously shaped neurons (Brodmann,

2007; Nieuwenhuys et al., 2008).

The cortical cytoarchitecture and laminar structure show considerable variability across the

cerebral cortex. Numerous histological studies over the past century have sought to characterize

this variability through qualitative and quantitative assessment of cortical histological samples.

These studies have demonstrated that: i) there are sharp or gradual boundaries of cytoarchitec-

tonic variations that can define cortical areas (Amunts & Zilles, 2015; Brodmann, 2007); and ii)

there are global patterns of cytoarchitectonic variation across the cerebral cortex, which can be

characterized as a few discrete cortical types (Garćıa-Cabezas et al., 2019; von Economo et al.,

1925) as well as continuous gradients of variability (Bailey, 1951; Bajada et al., 2020; Paquola,

Vos De Wael, et al., 2019). While previous research has been instrumental to our understanding

of laminar structure variability across the cortex and its functional significance, these studies

have been constrained by using qualitative assessments which are prone to biases, and the lim-

ited density of histological samples that does not cover the entire cortex. This raises the question

of how laminar structure varies across the entire cortex when a data-driven approach is used.

Such investigations have been made possible using modern whole-brain and ultrahigh-resolution

atlases such as the BigBrain (Amunts et al., 2013). In Study 1, our first aim was to leverage

this atlas to ask, using a data-driven dimensionality reduction approach, how laminar structure

varies across the isocortex.

The variability of cytoarchitecture and laminar structure at the mesoscale is suggested to

relate to the macroscale corticocortical connections. This relationship has been formalized as

the “structural model”, which suggests that (dis)similarity of the cytoarchitecture between cor-

tical areas can predict the laminar pattern and likelihood of their connectivity within a corti-

cal hierarchy (Barbas, 2015; Garćıa-Cabezas et al., 2019; Goulas et al., 2018; Hilgetag et al.,

2019). Notably, the cytoarchitectonic variability across the cerebral cortex and its relation to

macroscale connectivity are thought to have developmental origins (Barbas, 2015; Dombrowski

et al., 2001; Hilgetag et al., 2016). However, a comprehensive assessment of the association

between hierarchically-organized corticocortical connectivity to cortical cytoarchitecture in the

human isocortex is lacking. Therefore, in Study 1 we secondly aimed to study this association

while exploring the role of cortical maturation in shaping laminar structure, within the context

of the ”structural model”.
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1.4.2 Cortical Microcircuitry: Maturation of the Excitation and Inhibition

The cortical cytoarchitecture provides the structural scaffolding wherein the excitatory and in-

hibitory neurons embedded across cortical layers and minicolumns form local microcircuits that

exchange signals through both intracortical connections and long-range white matter pathways.

The interactions of this complex and modular network of neurons and microcircuits emerge into

dynamic cortical activity at the macroscale, which ultimately supports cognition and behavior

(Bassett & Gazzaniga, 2011; Breakspear, 2017). The optimal functioning of these microcircuits

crucially depends on maintaining a balanced state between excitation and inhibition (E-I) (Isaac-

son & Scanziani, 2011), which is essential for functional properties such as the dynamic stability

of activity (Wu et al., 2022), the efficient coding of information (Denève & Machens, 2016),

the tuning of sensory stimuli (Isaacson & Scanziani, 2011), and the generation of synchronous

cortical oscillations (Atallah & Scanziani, 2009; Sohal et al., 2009).

The cortical microcircuits undergo substantial maturational changes during development

(Caballero et al., 2021; Lewis et al., 2004). In particular, adolescence is considered a critical

developmental period for the maturation of E-I ratio, which involves changes such as i) prun-

ing of the excitatory synapses (Anderson et al., 1995; Huttenlocher, 1979), ii) modifications

in the expression of genes associated with inhibitory neurons and gamma-aminobutyric acid

(GABA) transmission (Caballero & Tseng, 2016), iii) changes in the concentration of excita-

tory and inhibitory neurotransmitters (Perica et al., 2022), and iv) maturation of inhibitory

function leading to stronger and shorter inhibitory postsynaptic currents (Caballero & Tseng,

2016; Gonzalez-Burgos et al., 2015; Hashimoto et al., 2009). The maturation of excitatory and

inhibitory processes during adolescence is critical for the healthy development of mental func-

tions (Larsen & Luna, 2018). Impairments in this process may contribute to the emergence of

disorders such as schizophrenia (Insel, 2010; Keshavan et al., 2014), in which a disturbed E-I

ratio is considered a key pathophysiological mechanism (Dienel & Lewis, 2019; Hoftman et al.,

2017; Rolls & Deco, 2011). This highlights the importance of characterizing E-I ratio maturation

during adolescence.

However, given that excitation and inhibition are mesoscale phenomena, their direct in vivo

measurement requires invasive neuronal recording methods which are impractical in human

subjects. Functional imaging, on the other hand, can be performed more readily in adolescent

human subjects. Consequently, in vivo proxies of E-I ratio have been suggested that focus on

its proposed macroscale effects captured in functional imaging (Larsen et al., 2022; Trakoshis

et al., 2020) and electrophysiology (Medel et al., 2023; Uhlhaas et al., 2010). Theory-driven

computational modeling of cortical dynamics using BNMs is one such method, which can bridge

macroscale in vivo functional imaging data to modeled activity of neuronal populations and

the E-I ratio at the microscale (Deco et al., 2014). This approach involves simulating the

dynamic spontaneous activity of modeled excitatory and inhibitory neurons across cortical areas

based on biologically realistic models that are informed by, for instance, the observed functional

connectivity and dynamics captured in resting-state fMRI (rs-fMRI) (Breakspear, 2017; Deco &

Kringelbach, 2014; Stephan et al., 2015). In Study 2, leveraging this approach applied to imaging

data of human adolescents, we asked how the regional E-I ratio matures during adolescence, to

provide further human in vivo evidence for this important maturational processes. We aimed

to achieve this by using individualized simulations of BNMs to non-invasively estimate regional

E-I ratio at the mesoscale based on macroscale cortical connectivity and dynamics captured in
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functional imaging data.

1.4.3 Cortical Cellular and Molecular Processes: Neurobiological Correlates

of Cortical Morphological Maturation

The development of excitation and inhibition, glial cells, cortical cytoarchitecture and intracor-

tical myelination at the microscale mirror substantial developmental changes of the macroscale

cortical structure and morphology (Sydnor et al., 2021). Cortical thickness (CT), derived from

structural MRI (Dale et al., 1999), is an important marker of cortical morphology which has

been studied extensively through development and lifespan. Studies employing normative mod-

eling approaches have revealed that, following an initial period of growth within the first two

years of life, CT gradually decreases as development progresses (Bethlehem et al., 2022; Ruther-

ford et al., 2022). However, the lifespan trajectories of CT changes through development and

aging are heterogeneous across different cortical areas (Bethlehem et al., 2022; Rutherford et al.,

2022). In this context, an intriguing question in developmental neuroscience is: What microscale

neurobiological mechanisms may underlie the macroscale changes of cortical morphology, and

in particular CT, throughout lifespan?

Various neurobiological mechanisms have been suggested to contribute to the lifespan changes

of CT, most notably including: i) synaptic pruning and remodeling of dendritic arbor (Ander-

son et al., 1995; Huttenlocher, 1979; Petanjek et al., 2008), ii) restructuring of cortical neuronal

and glial cells such as alterations in the number of glial cells due to changes in metabolic needs

(Paus et al., 2008), and iii) intra- and pericortical myelination that can reduce the grey and

white matter tissue contrast in structural MRI which may appear as cortical thinning (Paus

et al., 2008). Indeed, these mechanisms are believed to interact and are additionally influenced

by other biological factors such as neurotransmitter systems (Altamura et al., 2007). However,

directly assessing the roles of these micro- and mesoscale biological processes in the patterns of

CT maturation is challenging. This is due to the fact that evaluating markers of these neurobio-

logical processes often require postmortem investigations, or nuclear imaging, which has inherent

radioactive risks prohibiting its use in developing subjects. However, normative (adult) maps of

these neurobiological markers are available and characterize their regional heterogeneity (Hansen

et al., 2022; Hawrylycz et al., 2012; Markello et al., 2022). In turn, a promising computational

approach known as ‘virtual histology’ relies on spatial colocalization of neurobiological markers

(e.g., transcriptomic maps of neuronal and glial cell types) with in vivo MRI-derived markers

of interest (e.g., CT or its maturational trajectories), aiming to bridge the gap between the two

levels by estimating the contribution of various neurobiological markers in explaining regional

variability of MRI-derived markers (Paus, 2018). In Study 3, using this approach we asked

what cellular and molecular processes may underlie the maturation of cortical morphology, and

particularly its thickness, by assessing spatial colocalization of CT change trajectories at the

macroscale with maps of micro-/mesoscale neurobiological markers.

1.5 Ethics Protocols

The ethical approval for using publicly available datasets included in this research was granted

by the Ethics Committee of Heinrich Heine University Düsseldorf (Study Number 2018-317).
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The datasets used in this research have received specific ethical approvals for collection and

sharing of the data from their respective local ethics committees, as detailed in the cited sources

of each Study.

1.6 Aims of Thesis

The overall goal of this thesis was to advance our understanding of the complexity of corti-

cal organization and its maturation by using computational methods to bridge micro-/meso-

and macroscale. Together with my colleagues, I applied this computational and developmental

perspective to study three specific aspects of cortical organization at mesoscale in relation to

macroscale:

- In Study 1, we leveraged an ultra-high-resolution histological atlas and data-driven di-

mensionality reduction aiming to, first, characterize how laminar structure at mesoscale

varies across cortical mantle, and second, examine its association with macroscale cortical

connectivity and maturation in the context of the ”structural model”.

- In Study 2, we aimed to use computational simulations of BNMs to estimate individual-

ized regional levels of mesoscale E-I ratio based on macroscale cortical connectivity and

dynamics captured in functional imaging, and to examine its maturation through adoles-

cence.

- In Study 3, we used a virtual histology approach aimed at assessing the spatial colo-

calization of macroscale CT change trajectories with the maps of micro- and mesoscale

neurobiological markers to gain further insights into cellular and molecular processes that

may underlie the lifespan changes of cortical morphology.
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Chapter 5

Discussion

5.1 Summary and Implications of Findings

The overall goal of this thesis was to study key mesoscale biological characteristics of the cortex

in relation to its macroscale organization, structure, function and connectivity in the context

of development. This goal was pursued by applying theory- and data-driven computational

methods on multimodal brain imaging data at multiple scales (Fig. 5.1).

In Study 1 we used PCA dimensionality reduction on laminar thickness and density data

at mesoscale which was obtained from the BigBrain atlas (Amunts et al., 2013; Wagstyl et

al., 2020). This analysis identified a principal axis of laminar structure variation stretching

from caudal to rostral areas (Saberi et al., 2023). Along this axis, the relative thickness of

infragranular layers increased while the neuronal density across all layers decreased. Linking

laminar structure variation to hierarchically-organized cortical connectivity at the macroscale,

in accordance with the ”structural model” (Barbas, 2015; Garćıa-Cabezas et al., 2019) we found

that: i) the infragranular-dominant pattern of laminar thickness was associated with higher

hierarchical positions of cortical areas, and ii) cortical areas with similar laminar structure

were more likely and strongly connected to each other, following the homophilic principle of

connectivity which is suggested to have developmental roots (Sebenius et al., 2024). Supporting

this notion, we found areas with similar laminar structure to show higher structural covariance,

potentially reflecting their shared genetic and maturational effects (Valk et al., 2020).

Study 2 focused on the E-I ratio, an important functional feature of the cerebral cortex at the

mesoscale, and studied its adolescent maturation. The regional E-I ratio was estimated for each

individual subject and imaging session through model inversion of BNMs, employing large-scale

simulations which enabled the inference of E-I ratio at the mesoscale from macroscale cortical

connectivity and dynamics observed in rs-fMRI. This approach was applied on two indepen-

dent cross-sectional and longitudinal adolescent samples, revealing a developmental decrease of

the E-I ratio (higher inhibition or lower excitation) in the association areas in contrast to its

increase or lack of change in sensorimotor areas (Saberi et al., 2025). These findings support

the current theories suggesting a sensorimotor-association neurodevelopmental hierarchy in the

cerebral cortex (Sydnor et al., 2021).

Lastly, in Study 3, we employed a virtual histology approach to investigate the extent to

which cellular and molecular processes at the micro- and mesoscale may underlie the matura-

tion and lifespan changes of cortical morphology at the macroscale. By examining the spatial

co-localization between modeled lifespan changes of CT and normative adult-derived maps of

neurobiological markers we underscored the potential role of dopaminergic receptors, inhibitory

13
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neurons, glial cell populations, and metabolic features during childhood and adolescence matu-

ration of CT, and cholinergic and glutamatergic systems related to its changes during adulthood

(Lotter et al., 2024).

Fig. 5.1. Overview. Computational methods were used to integrate across micro-/mesoscale and macroscale
cortical organization in the context of its development. Part of the figure was created with BioRender.com.
BOLD: Blood-oxygen-level-dependent; rs-fMRI: resting-state functional magnetic resonance imaging.

Collectively, across the studies conducted in this thesis several key insights converge:

1. Macroscale cortical features such as its structure, function, connectivity and dynamics

interact and emerge from micro- and mesoscale biological processes. In this context, com-

putational neuroscience approaches are powerful tools to gain insights into how these

different scales interact across both structural and functional domains.

2. The multiscale cortical features and their maturational trajectories vary across cortical

areas organized along principal axes of variation, including the sensorimotor-association

axis (Sydnor et al., 2021) and the rostrocaudal axis (Finlay & Uchiyama, 2015).

3. The regional heterogeneity of maturational trajectories and cortical features are spatially

co-aligned. Although establishing causal links is difficult, this suggest that i) intrinsic and

baseline differences across areas can influence the nature and timing of neurodevelopmen-

tal processes, and ii) the neurodevelopmental processes, on the other hand, can shape the

adult patterns of how different features are distributed across the cerebral cortex. No-

tably, both of these processes are influenced by intrinsic genetic factors as well as extrinsic

environmental factors and experience (Sydnor et al., 2021).
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5.2 Laminar Structure and its Links to Connectivity

Our findings in Study 1 complemented previous qualitative and quantitative descriptions of

laminar structure and cytoarchitecture (Garćıa-Cabezas et al., 2020; Paquola, Vos De Wael, et

al., 2019) by providing more comprehensive and data-driven accounts of laminar structure based

on an ultra-high-resolution postmortem atlas of a human brain (Amunts et al., 2013). We found

that from rostral to caudal cortical areas, the relative thickness of infragranular layers decreased

while neuronal density increased across all layers, but most prominently in layer IV. This finding

was consistent with the reports of a previous study on non-human primates and rodents, which

described rostrocaudal variability of supra- versus infragranular layers, though only using limited

cortical samples rather than a complete mapping of the cortices (Charvet et al., 2015). However,

the rostrocaudal axis of laminar structure variability identified in our study diverges from a

sensory-fugal pattern of variability across the ‘cortical types’, which was identified by qualitative

inspection of histological samples (Garćıa-Cabezas et al., 2019, 2020). This divergence can be

attributed to the different quantitative versus qualitative approaches as well as the features

considered in the models of the laminar structure variability (Garćıa-Cabezas et al., 2019, 2020).

Indeed, different features of laminar structure (and more broadly cytoarchitecture) may be

distributed differently across cortical areas, following distinct axes of variability. Relatedly, a

previous data-driven and layer-agnostic characterization of microstructural variability across

the BigBrain’s cerebral cortex reported both the rostrocaudal and sensory-fugal axes as the

principal axes of microstructural variability (Paquola et al., 2021). A similar rostrocaudal axis

of variability was identified in another study that characterized the left-right asymmetry of

cortical microstructure in the BigBrain (Wan et al., 2024).

Furthermore, supporting the ”structural model” (Barbas, 2015; Garćıa-Cabezas et al., 2019;

Goulas et al., 2018; Hilgetag et al., 2019), we showed that the laminar structure variability at the

mesoscale is linked to the hierarchically-organized cortical connectome. This association has been

previously shown in several other animal and human studies reporting higher likelihood and/or

strength of connections related to the similarity of cytoarchitecture and laminar structure, based

on the complexity of pyramidal neurons (Scholtens et al., 2014), neuronal density (Beul et

al., 2017; Hilgetag et al., 2016), cortical types (Beul et al., 2015; Goulas et al., 2017, 2019;

Hilgetag et al., 2016), and microstructural profiles (Wei et al., 2018). Furthermore, the cortical

cytoarchitectonic variability has been associated with the laminar pattern of corticocortical

connections (Aparicio-Rodŕıguez & Garćıa-Cabezas, 2023; Goulas et al., 2018; Hilgetag et al.,

2019) which is thought to vary across cortical hierarchicy (Bastos et al., 2012; Goulas et al.,

2018; Vezoli et al., 2021).

5.3 Adolescent Maturation of the Excitation-Inhibition Ratio

The findings from previous animal studies, as well as human postmortem and in vivo investiga-

tions suggest that adolescence is associated with key maturational changes in cortical E-I ratio

(Caballero & Tseng, 2016; Caballero et al., 2021; Lewis et al., 2004). In Study 2, we used a com-

putational model to infer individual-specific estimates of regional E-I ratio from in vivo observed

data of functional connectivity and dynamics. Doing so enabled non-invasive and comprehensive

investigation of spatiotemporal patterns of E-I ratio maturation in human adolescents, providing



5. Discussion 16

further evidence for this important maturational process in the human cortex. Specifically, we

observed a sensorimotor-association pattern of E-I ratio maturation during adolescence: The

association areas showed a developmental decrease of the E-I ratio towards higher inhibition or

lower excitation, while the sensorimotor areas showed an increase of the E-I ratio or its lack

of change. This finding aligns with the findings of previous laboratory studies at molecular

and cellular levels which have reported evidence suggesting a maturation of inhibition during

adolescence, primarily within the association areas and particularly in the prefrontal cortex.

Postmortem transcriptomics analyses in animals and humans have shown important changes in

the expression of relevant genes, such as a shift in the composition of GABAA receptors from α2-

to α1-containing receptors (Caballero & Tseng, 2016; Duncan et al., 2010; Hoftman & Lewis,

2011). This shift is believed to result in faster decay times of the receptors, and in turn, a mat-

urational increase in the strength of inhibitory postsynaptic currents have been reported using

in vivo neuronal recording of pyramidal neurons within this area (Gonzalez-Burgos et al., 2015;

Hashimoto et al., 2009). In parallel, postmortem histological studies have shown a dramatic

peri-adolescence pruning of the excitatory synapses in the prefrontal cortex, which is thought

to result in a reduction of excitatory input to the neurons.

Human in vivo studies on adolescent maturation of the excitation and inhibition have used

a variety of markers and functional proxies. Similar to our study, rs-fMRI data has been used

to make inferences about E-I ratio in two other human studies aiming to map its maturation.

Firstly, a study by Larsen et al., 2022 estimated the global E-I ratio across the cortex by

assessing the similarity of functional connectivity (FC) patterns of adolescents to the FC patterns

observed in adults who had received alprazolam, a GABAergic agonist, compared to placebo.

Using this marker, an age-related reduction of the E-I ratio was found across the entire cortex.

However, when this analysis was performed for association and sensorimotor areas separately, the

decrease was found to occur selectively in the association and not the sensorimotor areas, which

was consistent with the sensorimotor-association developmental pattern we observed. Secondly,

Zhang et al., 2024 in a recent study used group-level BNMs to estimate E-I ratio and reported a

widespread decrease of the E-I ratio which was most prominent in the sensorimotor areas. This

study used BNMs constructed for 29 age groups of the Philadelphia Neurodevelopmental Cohort

(PNC) dataset, which puts it in contrast to our study where we constructed individualized

BNMs by using large-scale simulations powered by our Graphical Processing Unit (GPU)-based

implementation (see section 5.5). The individualized models used in our study provided a

subject-level precision, which is suggested to enhance reliability and fingerprinting accuracy of

models (Domhof et al., 2022). Moreover, these models enabled longitudinal assessment of within-

subject maturation of the E-I ratio. The observed discrepancy between our findings and those

reported by Zhang et al., 2024 in the sensorimotor areas may be attributable to the utilization

of individualized as opposed to group-level BNMs, the distinct simulation-based markers of

the E-I ratio, and the differences in methodological details of image processing, modeling and

optimization.
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5.4 Neurobiological Processes Underlying Cortical Morphology

Maturation

Our findings in Study 3 characterized the neurobiological processes that might underlie CT mat-

uration across different stages of development and lifespan. During childhood development and

adolescence we found contributions of neurobiological markers including dopaminergic receptors,

microglia and oligodendrocyte progenitor cells, as well as somatostatin inhibitory neurons, in ex-

plaining the maturational CT changes. In line with the observed association of CT development

with the distribution of dopaminergic receptors, regulatory effects of these receptors on cortical

macrostructural development have been demonstrated, for example, linked to the adverse effects

of in utero cocaine exposure (Bhide, 2009; Grewen et al., 2014). Furthermore, cortical glial cells

have been shown to play an active role in developmental synaptic remodeling (Petanjek et al.,

2008) as well as intracortical myelination (Kuhn et al., 2019; McNamara et al., 2023), while

both of these processes are thought to contribute to the macroscale CT (Paus et al., 2008).

In Study 3 we extended the findings of several previous studies on the neurobiological process

underlying cortical macrostructural maturation (Ball et al., 2020; Parker et al., 2020; Paus, 2018,

2023; Shin et al., 2018; Vidal-Pineiro et al., 2020). For instance, Shin et al., 2018 investigated

the association of gene expression maps of nine neuronal and glial cell types with the patterns

of cortical thinning during adolescence and found it to relate to expression of genes marking

subtypes of pyramidal neurons as well as astrocytes and microglia. Following, another study fo-

cused on cortical thinning pattern during childhood, and reported its spatial co-localization with

gradients of gene expression involving genes that are expressed predominantly in excitatory and

inhibitory neurons and are involved in synaptic remodeling (Ball et al., 2020). Subsequently,

Parker et al., 2020 applied this approach to a wider age range and a larger sample, showing

association of cortical thinning with gradients in the expression of genes associated with den-

drites, dendritic spines, and myelin. Our study complemented these findings by applying more

comprehensive analyses, including: i) estimation of CT changes using larger samples, including

a cross-sectional normative model based on the data of 58,836 subjects (Bethlehem et al., 2022),

as well as longitudinal maturational patterns estimated based on large-scale cohorts of Adoles-

cent Brain Cognitive Development (ABCD) Study (N = 6789) and IMAGEN (N = 915–1142),

ii) coverage of a wider age range enabled by the cross-sectional normative models of CT, and

iii) inclusion of multiple imaging-based maps in addition to transcriptomic maps of cell types,

reflecting a more diverse array of cellular and molecular biological processes.

5.5 Methodological Advances

In addition to extending our understanding of the cerebral cortex organization and development,

our research in this thesis resulted in advances in methodology and development of tools that can

be beneficial to the research community and future studies. These methodological advances were

exemplified in Study 2, where a specialized toolbox named cuBNM (https://cubnm.readthedocs.

io/en/latest/) was developed. This toolbox was designed to perform efficient simulation and

optimization of high-dimensional BNMs by using GPUs. As detailed in Study 2, the process

of fitting BNMs to the imaging data of an individual subject/session involves tuning model

https://cubnm.readthedocs.io/en/latest/
https://cubnm.readthedocs.io/en/latest/
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parameters to produce simulated signals that closely match the target data. This process often

necessitates several thousands of simulations - depending on the complexity and dimensionality

of the model. Therefore, in typical BNM studies, the computational costs of simulations have

been a significant bottleneck, limiting the scalability of this approach to larger samples and

more complicated (higher dimensional) models. This is due to the fact that the traditional

implementations of these simulations (e.g., The Virtual Brain (Ritter et al., 2013)) run on

Central Processing Units (CPUs) and involve running a massive number of serial calculations

across subjects, simulations, areas and time. GPUs, on the other hand, are designed for highly

parallelized computations and can be used to accelerate BNM simulations. This motivated the

development of the cuBNM toolbox, which utilizes GPUs to achieve a dramatic speed-up of

calculations up to 1300 times faster than CPUs.1 This innovation was integral for the feasibility

of Study 2, which involved scaling of the BNM approach to approximately 1000 subjects/sessions,

considerably higher than the typical samples used in the BNM studies, and using a rather higher-

dimensional and biologically more realistic model that acknowledged regional heterogeneity of

model parameters, compared to traditional models which assume homogeneity of parameters

across areas. The cuBNM toolbox has been made freely available as an open source Python

package, accompanied by documentation and tutorials for its usage (Fig. 5.2).

Fig. 5.2. The cuBNM toolbox documentation.

5.6 Future Directions

The research conducted in this thesis highlights outstanding questions and opens up new avenues

of future research, focusing on i) advancing the experimental approaches towards improving the

precision of the models and the data, ii) multimodal investigation of inter-related maturational

processes during cortical development, and, ultimately, iii) the clinical translations of our findings

and computational approaches.

1The speed-up is dependent on the GPU and CPU models as well as the number of simulations, nodes,
simulation time, and type of the model.
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5.6.1 Advancing the Experimental Approaches

Our laminar model in Study 1 was based on high-resolution histological data from a single adult

brain (Amunts et al., 2013). Therefore, an intriguing question remains on how our observed pat-

tern generalizes to additional subjects across a broader demographic range. This important step

awaits the availability of similar postmortem atlases and the layer segmentation of their cortices.

Until then, in vivo imaging of laminar structure using MRI is a promising area of research that

can address this question (reviewed in Trampel et al., 2019). Additionally, depth-dependent

analyses of cortical profiles provide an alternative, layer-agnostic framework for understanding

microstructural gradients and functional differentiation across the cortex. Using such methods,

future research can: i) assess the generalizability of the rostrocaudal pattern of increasing dom-

inance of supragranular layers found in our study to other individuals, while understanding the

impacts of its inter-individual differences, e.g., across genders (Küchenhoff et al., 2024), ii) in-

vestigate the links between laminar structure or microstructure with corticocortical connectivity

(e.g. Valk et al., 2022) and its hierarchical organization within the same individuals, as opposed

to our study in which the laminar structure and the connectomes were based on different indi-

viduals/groups, and iii) extend our initial findings on the relevance of maturational processes on

laminar structure by assessing age-related changes of laminar structure or microstructure (e.g.

Paquola, Bethlehem, et al., 2019).

Moreover, while our individualized biophysical network model in Study 2 captured key devel-

opmental shifts in the cortical E-I ratio, future work on computational modeling of the E-I ratio

can benefit from incorporating biologically more realistic models. The model we used in Study

2 was described by neural mass models consisting of single excitatory and inhibitory neuronal

ensembles in each area (Deco et al., 2014). This model, in turn, lacks certain biological details

such as the layered structure of the cortex, the excitatory and inhibitory neurons distributed

across the layers and their distinct functional properties (Lake et al., 2016; X.-J. Wang, 2020), as

well as laminar pattern of feedforward and feedback connections between cortical areas (Bastos

et al., 2012; Vezoli et al., 2021). More complex models that incorporate layers, subtypes of

neurons and feedforward/-back connections have been developed (Froudist-Walsh et al., 2021;

Mejias et al., 2016; P. Wang & Knösche, 2013) and can be used in future studies to investigate

the E-I ratio at a finer level. Notably, application of such more complex models to the imaging

data at a scale on par with Study 2, will require methodological advances in both the efficiency

of simulation-optimization pipeline, as well as the spatial and temporal resolution of the data

(e.g. layer-fMRI).

5.6.2 Multimodal Investigation of Cortical Maturation

Cortical maturation is a complex, multifaceted process that involves inter-related changes across

different levels of cortical structure, function and connectivity (Larsen & Luna, 2018; Sydnor

et al., 2021). The maturation of the E-I ratio, for instance, is suggested to mirror the onset

of a critical period of plasticity associated with increased cortical myelination (Larsen & Luna,

2018). Notably, myelination of parvalbumin-positive interneurons, which account for 25-50% of

the intracortical myelination, is essential for their function and generation of gamma oscillations

(Stedehouder & Kushner, 2017). Conversely, GABAergic activity is shown to promote myeli-

nation (Vélez-Fort et al., 2012). These changes in cortical microstructure and microcircuitry
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are mirrored by the development of neurotransmitter systems such as the dopaminergic system

(Larsen & Luna, 2018). Animal studies have shown that dopamine D1 and D2 receptor densi-

ties in the prefrontal cortex peak during late childhood or early adolescence (Larsen & Luna,

2018; Lidow & Rakic, 1992), and functional changes lead to greater inhibition in response to

dopamine release (Larsen & Luna, 2018; O’Donnell, 2010). On the other hand, in Study 3, our

findings linked the maturation of cortical morphology to neurotransmitter systems, including

the dopaminergic system, as well as specific glial and neuronal subtypes.

Taken together, evidence from animal studies, virtual histology, and overlapping matura-

tional trajectories suggest that the development of cortical structure, myelination, microcircuitry

and neurotransmitter systems are inter-related processes. However, direct, subject-level links

between the maturation of these processes in the human brain remain limited and understud-

ied. This highlights the need for future multimodal and integrative studies on the concurrent

maturation of these neurobiological processes within the same developing individual or cohort,

to better understand their dynamic interplay during development.

5.6.3 Clinical Translations

Several mental health disorders, such as psychosis, mood disorders, and substance abuse, are

believed to emerge during development, particularly in adolescence. Their onset is thought to

relate to alterations in typical maturation, influenced by genetic factors as well as biological

and psychosocial environments (Paus et al., 2008). Understanding these neurodevelopmental

alterations across multiple scales of cortical organization requires a clearer characterization of

the typical maturation trajectories at the micro-, meso- and macroscale, alongside the develop-

ment of computational methods to analyze them. These methods can then be applied to clinical

or at-risk developing populations. In turn, comparing them with healthy individuals and the

typical neurodevelomental trajectories, allows future research to understand how cortical orga-

nization is impaired in mental health disorders and whether these impairments reflect altered

neurodevelopmental patterns.

Schizophrenia is a prominent example of a disorder with neurodevelopmental origins. It is

suggested to emerge due to abnormal cortical maturation, in particular associated with imbal-

ances in cortical excitation and inhibition, dopaminergic dysfunction, and structural changes

such as cortical thinning and reduced myelination (Hoftman et al., 2017; Insel, 2010; Keshavan

et al., 2014; Paus et al., 2008; Rolls & Deco, 2011). In this context, an important direction

for future research is to apply computational approaches to multimodal imaging data from di-

agnosed and high-risk individuals for schizophrenia. This can help investigate maturational

impairments in E-I ratio, the dopaminergic system and cortical (micro)structure, as well as

their inter-relations, as potential underlying neurodevelopmental mechanisms of schizophrenia.

Such insights into the neurodevelopmental model of schizophrenia may ultimately help in early

detection of at-risk children and adolescents, aiming towards more effective management of the

disease and potentially mitigating its progress.
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5.7 Conclusion

In this thesis, my colleagues and I applied advanced computational methods to bridge differ-

ent scales of investigation, exploring the links between micro- and mesoscale processes with the

macroscale cortical organization and its development. First, we demonstrated that cortical lam-

inar structure varies along a rostrocaudal axis and is linked to hierarchically-organized cortical

connectome, which we hypothesized may have developmental origins. Second, we used compu-

tational biophysical models of the cerebral cortex to estimate regional E-I ratio in individual

adolescents based on imaging data. Our findings revealed distinct maturational trajectories

between association areas, showing a shift towards higher inhibition, and sensorimotor areas,

showing a lack of change or shifts towards higher excitation. Notably, the large-scale simulations

performed in this study were enabled by a novel GPU-based implementation of BNM simula-

tions, which was released as an open-source Python toolbox, cuBNM. Third, we used a virtual

histology approach to examine the relationship between spatiotemporal patterns of cortical mor-

phology maturation and maps of neurobiological processes. Through this approach we provided

evidence that specific cellular and molecular neurobiological processes, such as neurotransmit-

ter systems, glial cells, and neuronal subtypes, may play a role in shaping cortical morphology

throughout development and across the lifespan.

Together, this research advances our understanding of multiscale cortical organization and

its maturation while also developing computational tools for future studies. Our findings and

approach can serve as a foundation for further research into clinical translational applications,

particularly in understanding how impaired cortical maturation and organization contribute to

the emergence of mental health disorders.
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schmidt, L., Bayrak, Ş., Bethlehem, R. A. I., Eickhoff, S. B., Bernhardt, B. C., & Valk,

S. L. (2024, April). Microstructural asymmetry in the human cortex. https://doi.org/

10.1101/2024.04.08.587194

https://doi.org/10.7554/eLife.55684
https://doi.org/10.1016/j.neuroimage.2017.09.037
https://doi.org/10.1016/j.neuroimage.2017.09.037
https://doi.org/10.1016/j.tics.2009.12.002
https://doi.org/10.1126/sciadv.abb3417
https://doi.org/10.1038/s41467-022-29886-1
https://doi.org/10.1016/j.biopsych.2019.05.015
https://doi.org/10.1016/j.biopsych.2019.05.015
https://doi.org/10.1177/1073858411403317
https://doi.org/10.1016/j.neuroimage.2020.117479
https://doi.org/10.1016/j.neuroimage.2020.117479
https://doi.org/10.1038/s41598-020-78471-3
https://doi.org/10.1038/s41598-020-78471-3
https://doi.org/10.1371/journal.pbio.3000678
https://doi.org/10.1101/2024.04.08.587194
https://doi.org/10.1101/2024.04.08.587194


Bibliography 31
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